Learned Visual Navigation for Under-Canopy Agricultural Robots

Arun Narenthiran Sivakumar¹, Sahil Modi¹, Mateus Valverde Gasparino¹, Che Ellis², Andres Baquero Velasquez¹, Girish Chowdhary^{1*}, Saurabh Gupta^{1*}

¹University of Illinois at Urbana-Champaign

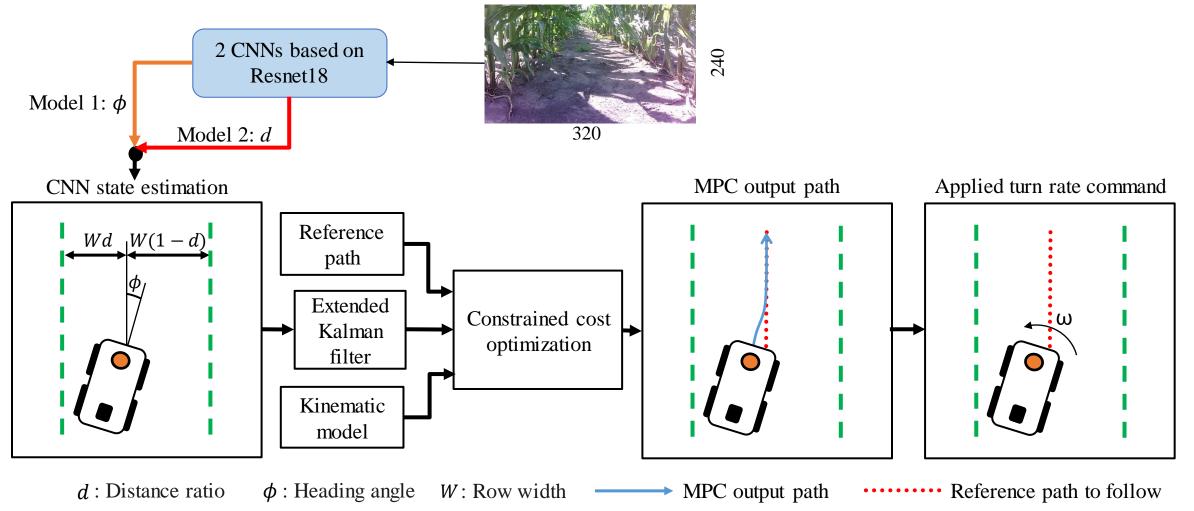
²Earthsense Inc.

*equal contribution

Under-canopy agricultural robots

Under-canopy navigation is challenging

- Unreliable GPS, LiDAR
- Lots of occlusion and clutter
- Large variability in appearance over season and crops
- No large scale under-canopy datasets
- Lack of extensive real world validation

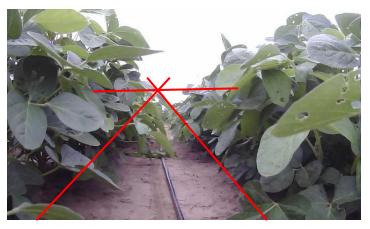

View from on-board camera of the robot

Contributions

- Collected a large and diverse under-canopy corn and soy dataset
- Developed a modular approach that combines
 - \circ $\,$ Learning based perception $\,$
 - Inertial measurement unit (IMU) sensor fusion using extended Kalman filter (EKF)
 - Model predictive controller (MPC)
- Extensively validated the proposed system in the field
 - Over 25km of under-canopy visual autonomy
 - Outperforms LiDAR (distance between intervention of 485 meters vs 286 meters)
 - \circ 50x reduction in cost over LiDAR

CropFollow Overview

Labeled Dataset


- Corn
 - 2.7 hours of data
 - \circ 19 fields
 - $_{\odot}$ 25296 labeled images
 - Early 28%, Late 72%

- Soybean
 - 1.2 hours of data
 - \circ 4 fields
 - $_{\circ}$ 10685 labeled images
 - Early 54%, Mid 46%

Offline and Field validation

• Offline validation of heading and distance ratio model

	Heading (deg)	Distance Ratio
Mean error	1.99	0.04
Median error	1.21	0.03
95 %ile error	4.71	0.19

Field validation of the proposed system – CropFollow vs LiDAR

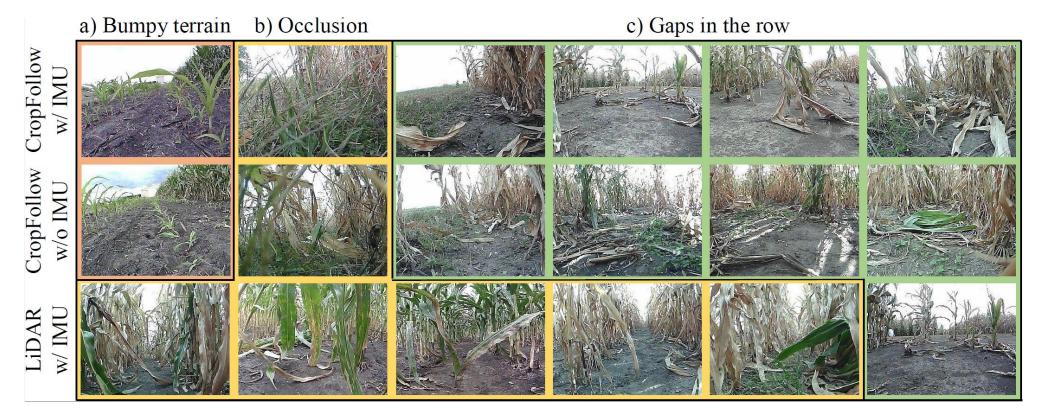
Growth Stage	Length (m)	LiDAR w/ IMU	LiDAR w/o IMU	CropFollow w/ IMU	CropFollow w/o IMU
Early	1120	-	-	3	4
Late	3726	13	72	7	8

CropFollow w/IMU – 485 meters/intervention compared to LiDAR w/ IMU – 286 meters/intervention

Field validation in diverse environments

Late season

Navigating through occluding leaves


Videos are at 5x speed

Early season

Navigating

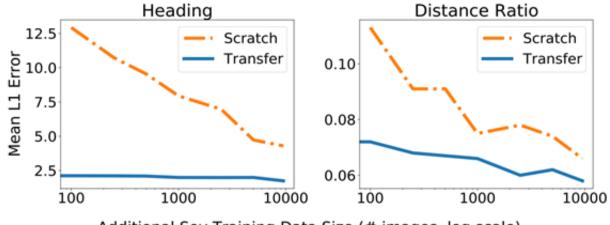
through a curve

Failure modes of vision vs LiDAR

- Vision Gaps in the row since no such images in training data
- LiDAR Occlusions

Generalization to Soybean

 Soybean appears very different from corn (shorter and stouter)



Soybean

Corn

 Heading and distance models trained on corn generalizes well without retraining in soybean

Additional Soy Training Data Size (# images, log scale)

Summary

- We have developed a low cost, modular learning based vision navigation approach for under-canopy navigation
- Extensive field validation over 25 km shows the effectiveness of this approach (485 meters/intervention compared to LiDAR's 286 meters/intervention)
- ~1000 labeled images and 24000 unlabeled images from our work are openly accessible to enable further research

